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Okay, I can see that the flow 

intensity firstly increases and 

then decreases, but I don’t know 

the reasons and what will 

happen next …

Oh, I found the player's flow 

can be traced: 

• Initially, the flow state and 

intensity are rising to high level.

• The decrease may be caused 

by temporarily interference.

• The flow state recovers and 

may increase again in the future.

Game Playing

EEG Signals

Fine-grained 

Frequency Depiction

Dynamical Flow 

Representation

Flow State & Intensity

Recognition

3

2

1

0

0 4

？

？

？

8

Maintain

High State

Maintain

Low State
Upgoing

Figure 1: Illustration of dynamic flow assessment using EEG signals. Traditional methods classify flow on the intensity aspect,
and it is difficult to explain the trends of flow. FA-ConFormer learns the intensity and flow states, so that it can comprehensively
consider the reasons for flow changes and subsequent developments.
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ABSTRACT
As an interaction experience goal, the flow experience is character-
ized by its subjectivity and dynamism. Exploring objective methods
to assess dynamic flow states is significant in enhancing user experi-
ence design, evaluation, and optimization. This study aims to model
the dynamics of the flow experience and quantify its intensity using
electroencephalography signals (EEG) from the perspective of the
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process. To achieve this, an interactive task is designed to induce
dynamic changes in flow, and EEG signals from participants were
recorded simultaneously, to form a flow assessment dataset. Sub-
sequently, a frequency-aware convolutional Transformer model
(FA-ConFormer) was proposed to extract dynamic features from
EEG, with particular optimization for capturing complex dynamic
features in the frequency domain. Experimental results demonstrate
that FA-ConFormer outperforms existing methods in flow state and
intensity recognition, the visualization of the flow process dynami-
cally depicting the onset, development, peak, and decline of flow
with varying intensities, which help to deepen the understanding
of flow experience.

CCS CONCEPTS
• Human-centered computing → HCI design and evaluation
methods.

KEYWORDS
Flow experience, EEG signal, Transformer, Flow recognition

ACM Reference Format:
Shilong Liu, Chaorui Tong, Zelu Liu, Xiangxian Li, Yawen Zheng, Chao
Zhou, Juan Liu, and Yulong Bian. 2025. Assessing Dynamic Flow Experience
from EEG Signals: A Processing-based Approach. In The 38th Annual ACM
Symposium on User Interface Software and Technology (UIST ’25), September
28-October 1, 2025, Busan, Republic of Korea. ACM, New York, NY, USA,
19 pages. https://doi.org/10.1145/3746059.3747603

1 INTRODUCTION
In human-computer interaction (HCI) activities, flow experience
(short as flow) is both a critical user experience goal and an essential
design objective pursued by HCI designers. Typically, flow is de-
scribed as a state of complete immersion and focused engagement
in the current activity [14]. When in a flow state, individuals exhibit
high levels of spontaneity, fluidity, and self-involvement.Individuals
subjectively enjoy the current activity and are spontaneously in-
clined to continue it [29, 70]. In HCI, flow experience refers to the
cognitive state of concentration and immersion achieved through
interactive technology [73]. Flow leads to higher task efficiency
and greater satisfaction [18, 68], therefore, is widely regarded an
optimal user experience and a crucial criterion to assess the quality
of user experience in various HCI activities [38, 70]. Exploring ef-
fective methods to assess flow experience is a significant issue in
the research on user experience in HCI.

Given the importance of flow experience, its assessment methods
have become a key issue in HCI research. Traditionally, researchers
have relied on subjective questionnaires and in-depth interviews to
capture users’ flow experiences [78]. However, these methods are
retrospective and have a subjective response bias, lacking real-time
characteristics [9]. Physiological signals, such as electroencephalog-
raphy (EEG), electrocardiogram (ECG), and skin conductance (SCL),
offer new avenues for the objective assessment of flow experience
[38, 48, 55, 64]. Specifically, EEG, with its high temporal resolu-
tion and direct reflection of cognition activity, offers the poten-
tial for real-time monitoring and analysis of flow-relevant states
[37, 63, 72].

However, current research on the physiological computation of
flow falls short in effectively representing the dynamic nature of
flow and achieving fine - grained prediction of its intensity and
temporal evolution. Firstly, current research focuses primarily on
the static description of flow states, such as merely determining
whether a user is in a flow state [17, 38, 39, 48, 55], while neglect-
ing the dynamic aspects of flow experiences, such as the upgoing
and downgoing of flow experience. The static perspective fails to
fully reveal the evolving patterns of flow experience and provides
incomplete insights into user experience states. Secondly, exist-
ing EEG-based flow computation methods do not adequately ad-
dress the dynamic characteristics of flow. Current research focuses
mainly on extracting local characteristics from EEG signals, such
as energy distribution in specific frequency bands [61]. However,
these approaches fail to adequately capture the global frequency
dynamics within local time frames, particularly the interactions
between different frequency bands, nonlinear dynamic evolution,
and subtle frequency changes [72]. Considering that the occurrence
and variation process of flow is dynamic [30, 47], these advanced
features are crucial for accurately reflecting the dynamics of flow
and enhancing the performance of flow assessment. Nonetheless,
existing methods have not addressed challenges related to these
features [62], which may adversely affect the accuracy of flow state
identification. Lastly, due to the absence of dynamic and process-
oriented perspectives in flow description and assessment methods,
existing research is struggling to effectively visualize the dynamic
process of flow experience during HCI activities [28].

To address the aforementioned problem, this study aims to ex-
plore objective assessment and detection methods for the dynamic
states and intensities of flow experience based on EEG signals from
a process view, and to visualize users’ flow experience during in-
teractive processes. In this context, the process view emphasizes
capturing the temporal evolution of flow experience as a continuous
dynamic process rather than discrete static segments. This paper
defines two complementary dimensions: Progression, which char-
acterizes the onset, development, peak, and decline of flow intensity
over time; Transition, which describes directional changes be-
tween flow states (e.g., upgoing, downgoing, maintaining high/low
states), with the underlying potential factors driving these changes.
Specifically, we first develop an HCI task to effectively induce dif-
ferent dynamic states and intensities of flow experience. Based on
the task, we construct a multi-channel EEG dataset with labels re-
flecting different intensities and dynamic states of flow experience.
Then, a frequency-aware convolutional Transformer-based flow
recognition model (FA-ConFormer) is proposed, which utilizes deep
networks to effectively extract dynamic frequency domain features
from EEG signals and verifies its performance in recognizing var-
ious intensities and dynamic states of flow through algorithmic
experiments. Finally, we implement an EEG-based visualization
of the flow experience, presenting the dynamic changes in the
flow states of the users during interaction from a process view, as
illustrated in Fig.1.

The main contributions of this paper include:

• We describe dynamic states of flow experience from a process
view and build the first multi-channel EEG dataset with
labels of flow intensity and dynamic states.

https://doi.org/10.1145/3746059.3747603
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• Wepropose FA-ConFormer, a frequency-aware convolutional
Transformer to effectively recognize dynamic flow states and
flow intensities based on EEG signals, which exhibits supe-
rior performance than previous methods.

• We achieve visualization of the dynamic flow experience for
the first time, which provides an intuitive description of flow
intensity and dynamic trends during the HCI activities.

2 RELATEDWORK
2.1 Dynamic Aspects of Flow
2.1.1 Dynamic Nature in the Concept of Flow. The flow experience
is a dynamic process, and its state and intensity will change over
time and in different situations [3]. Through long-term research,
Csikszentmihalyi [19] found that the flow experience not only de-
pends on the characteristics of the task itself but is also closely
related to an individual’s subjective feelings and the external en-
vironment. For example, in a study of musicians in professional
classical orchestras, Cohen et al. [13] discovered that the flow state
and intensity of musicians vary when they are faced with pieces of
different difficulties.

The generation and maintenance of the flow state rely on the
dynamic balance between the task challenge and an individual’s
skills. When the challenge of a task matches an individual’s skill
level, the individual is more likely to enter a flow state. However,
this balance is dynamic. Once the task difficulty suddenly increases
and the individual’s skills are insufficient to cope with it, or the
task difficulty is too low and the individual’s skills are excessive,
the flow state will be disrupted. For instance, in the flow model
proposed by Csikszentmihalyi et al. [15], when the task challenge is
too high, the individual may feel anxious; when the task challenge
is too low, the individual may feel bored.

The intensity of the flow is also dynamic, and it will change with
the individual’s level of engagement in the task, changes in their
skill level, and the influence of the external environment. Dietrich
et al. [23] pointed out that the intensity of the flow is closely related
to an individual’s neurocognitive mechanisms. When an individual
is completely immersed in a task, the intensity of the flowwill reach
a relatively high level. In addition, the intensity of the flow is also
affected by an individual’s emotional state. For example, when an
individual is in a positive emotional state, the intensity of the flow
may be higher.

2.1.2 Dynamic Representation in Flow Models. The three-channel
model is one of the most widely used theoretical frameworks in cur-
rent flow research [10, 75]. This model posits that flow experiences
arise from activities that present an optimal level of challenge and
defines three flow-related states based on different conditions of
challenge-skill matching, as illustrated in Fig.2a. When the level
of task challenge exceeds the participant’s skill level, individuals
often experience stress and anxiety due to the high difficult task.
Conversely, when the task challenge level is below the participant’s
skill level, the lack of sufficient challenge leads to boredom. The
optimal flow experience occurs when the challenge level of the
task aligns with the participant’s skill level, creating an ideal task
experience in this region known as the "flow channel". Building

upon the three-channel model, researchers have developed a four-
channel model, as shown in Fig.2b. This extended model asserts that
flow experiences are only achieved when skills and challenges are
matched at a higher level. At lower levels of matching, individuals
experience a state of "apathy" rather than flow [24]. These models
primarily emphasize the static dimensions of flow experience while
providing a preliminary schematic of flow dynamics. In Figure 2,
the arrows in the two models are not a representation of a certain
mechanism, but rather a schematic illustration of the dynamics of
flow. They visually demonstrate the dynamic changes of flow states,
namely, the shifts in flow experience states triggered by continuous
temporal changes in challenge-skill balance.
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High
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User Skills High User Skills High
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(a) Three-channel model (b) Four-channel model 

Figure 2: The three-channel and four-channel models illus-
trate the relationship among challenge level, skill level and
flow state.

However, the above-mentioned models not fully focus on the
dynamic aspects of the flow experience [6, 35]. Jenova Chen [11]
proposed a player-centered Dynamic Difficulty Adjustment (DDA)
game design methodology, emphasizing that by giving players
the opportunity for subconscious choices, they can actively cus-
tomize their gaming experiences and achieve dynamic difficulty
adjustment. This dynamic adjustment mechanism fully reflects the
dynamic nature of the flow experience, that is, the flow state is not
a fixed one, but constantly changes with the interaction between
individuals and the environment. It also verifies the importance
of the dynamics of flow from a practical perspective. In addition,
Kawabata [33] constructed an internal structure model of the flow
experience, dividing the nine main components of the flow experi-
ence into proximal conditions and characteristics of the flow state,
and hypothesizing a specific sequential relationship among various
factors. These nine components include: clear goals, immediate
feedback, balance between challenge and skill, concentration on
the task at hand, sense of control, loss of self-consciousness, trans-
formation of time perception, merging of action and awareness,
and autotelic experience. Proximal conditions (e.g., clear goals, im-
mediate feedback) lay the foundation for triggering flow, while
characteristics of the flow state (e.g., loss of self-consciousness,
transformation of time perception) emerge as the experience deep-
ens. Individuals need to continuously adjust their states to maintain
the flow experience according to the changing challenges and their
own skill levels. Meanwhile, the various factors of the flow experi-
ence interact and change dynamically, which further illustrates the
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importance of verifying the dynamics of flow for in-depth research
on the flow experience [4].

2.2 Methods for Assessing Flow
2.2.1 Subjective Measurement of Flow. Currently, the most popular
tools for measuring flow are flow questionnaires and scales [29].
Commonly used flow measurement tools include the Game Expe-
rience Questionnaire (GEQ) [44], the Standard Game Flow Index
(GFI) [8], the Flow State Scale (FSS), the Flow Measurement Scale
[8], the Flow Experience Assessment Scale (FEAS) [75], and so on.
However, the data obtained from these methods are based primarily
on the overall subjective experiences of the participants.

The Experience Sampling Method (ESM) is a commonly used
approach to measure flow experiences. It involves preparing a ques-
tionnaire with numerical scales and open-ended questions, which
participants complete at regular intervals. ESM captures data on the
frequency, location and content of activities in which individuals
participate, as well as their perceived flow state. Researchers can
use this information to explore and validate the components of the
flow and identify activities that trigger this state [16]. However,
ESM has a notable limitation: it measures flow at a macro-level
over specific periods, lacking the precision needed to record the
frequency and nature of flow experiences.

For these methods, the reliance on subjective reports can lead
to insufficient accuracy and reliability with limited applicability to
assess flow from a dynamic process view.

2.2.2 Neurophysiological Characteristics of Flow. Flow is not only a
subjective experience, but it also has specific physiological response
characteristics. Research indicates that flow is a positively valenced
state (emotional component) in which people perceive current ac-
tivity as optimally challenging (cognitive component) and are fully
focused on the task at hand (behavioral component) [24]. Flow
arises from the interaction between positive emotions and high at-
tention, enabling individuals to meet increasing task demands with
sustained efficiency without perceiving additional effort. Physiolog-
ical indicators can be used to measure objective reductions in effort
during flow [2, 22, 25, 45]. The existing literature indicates that
various physiological metrics, including cortical activity, peripheral
nervous system activity, cortisol secretion [34, 53], dopamine lev-
els, and facial muscle activity, are related to flow states to varying
degrees [20]. These physiological indicators reflect aspects of flow
such as physiological arousal, positive valence, mental effort, and
attention, thus directly or indirectly representing the flow state. In
summary, neurophysiologically, flow is an effortless subjective or
attentional state characterized by optimal physiological activation
for completing the current task. This state is associated with re-
duced activation of the sympathetic and parasympathetic nervous
systems [50].

Increasing research focuses further on the neural mechanisms
and characteristics of brain activity linked to flow experiences. In
flow states, individuals show transient hypofrontality, with implicit
automatic processing dominating [23, 50, 59]. Empirical studies
demonstrate that flow states are accompanied by significant in-
creases in frontomedial theta wave power (reflecting enhanced
attention concentration and executive control) and moderate alpha
wave activity in the frontocentral region (corresponding to optimal

cognitive efficiency) [40]. For instance, Katahira et al. [31] collected
EEG data from participants during tennis matches and found that
individuals in a flow state exhibited enhanced alpha activation in
the right frontal cortex. Studies on the correlation between flow and
EEG activity have revealed that compared to boredom, flow states
show stronger theta wave activity in the frontal region [40]. No-
tably, further source localization analysis indicates that alpha/beta
band power (BP) in the frontal lobe decreases during flow states,
which further supports the mechanism of transient hypofrontality
[41]. This transient hypofrontality of the prefrontal cortex is con-
sistent with the "effortlessness" characteristic of flow, as reduced
prefrontal involvement lessens conscious control, allowing for au-
tomatic and efficient task execution, and this process serves as the
neural basis for maintaining the challenge - skill balance. Addition-
ally, Hang et al. [26] confirmed a linear relationship between theta
wave activity and subjective flow ratings in a single channel pre-
frontal EEG study, emphasizing the correlation between frequency
domain features and flow intensity. Indices such as power spectral
density (PSD) and differential entropy (DE) can sensitively reflect
changes in the energy distribution of alpha/beta oscillations [20].
These findings collectively indicate that transient hypofrontality,
enhanced frontal theta wave activity, and balanced frontocentral
alpha wave activity provide core neural characteristic support for
the dynamic regulation of challenge - skill balance in flow states.

2.3 Methods for Calculating Flow
According to the neurophysiologicalmechanism of flow, researchers
have explored objective methods to assess flow based on physio-
logical data, especially EEG data [38, 64].

2.3.1 Flow Calculation Based on Multiple Physiological Signals. Us-
ing statistical methods, Harmat et al. [27] distinguish between flow
and non-flow states based on a custom-built database containing
ECG and respiratory signals, demonstrating the feasibility of using
physiological signals to differentiate flow states. Sinha et al. [65]
collected EEG, heart rate variability (HRV), and galvanic skin re-
sponse (GSR) data using wearable devices, and applied a Markov
chain model to differentiate between flow and boredom states using
a modified Stroop test. This validated the feasibility of detecting
flow experience through physiological responses.

By combining feature selection methods with machine learning
algorithms, Ye et al. [75] addressed the high spatial and temporal
resolution of physiological signal data and the issue of feature re-
dundancy. They compared five classification models to detect flow,
including support vector machines, decision trees, logistic regres-
sion, naive Bayes, and random forests. The highest classification
accuracies on three datasets were 60%, 66% and 45%, respectively.
After applying standardization strategies, the highest accuracies
for the three datasets increased to 76%, 82% and 71%, respectively.

Based on deep learning, Marco et al. [44] proposed the DeepLow
model to distinguish flow states. This method uses wristband de-
vices to collect physiological signals and applies end-to-end deep
learning to detect flow states. It differentiates between high-flow
and low-flow states and detects boredom and stress, achieving 70%
accuracy.
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2.3.2 Flow Calculation Based on EEG Signals. In the early explo-
ration, researchers used statistical analysismethods to verifywhether
EEG signals could be effectively used to detect flow states. Plotniko
et al. [58] established a database of EEG data collected from elec-
trodes and calculated the power within a 1-second sliding window
to detect flow states. Katahira et al. [31] collected EEG signals from
16 participants using a PD device during a mental arithmetic game
and employed analysis of variance (ANOVA) to successfully differ-
entiate between boredom, flow, andmental overload states, strongly
demonstrating that EEG can be used to distinguish game experience
states. Wang et al. [72] extracted EEG information through learning
tests and wearable devices and also used ANOVA to distinguish
between boredom and flow states.

With the advancement of research, machine learning algorithms
were introduced into EEG data processing, aiming to classify flow-
related states and optimize data features. Chanel et al. [7] applied
three classifiers-linear discriminant analysis, quadratic discriminant
analysis, and support vector machines with a radial basis function
kernel-to an EEG dataset to classify boredom, satisfaction (flow),
and anxiety states. The results showed that linear discriminant
analysis and support vector machines with a radial basis function
kernel performed best, with accuracies of 49% and 47% respectively.
After using the FCBF feature selection method, the accuracy of
quadratic discriminant analysis for peripheral features increased to
59%, and ANOVA feature selection increased the accuracy of linear
discriminant analysis to 56%.

In recent years, deep learning models have demonstrated great
advantages in EEG-based flow state detection, being able to more
accurately decode flow states and extract complex features. Cherep
et al. [12] used EEG headsets to collect data and applied the deep
learning model EEGnet to decode flow states, focusing on power
changes in local brain regions and the coordination between brain
areas. The accuracy of this method in distinguishing between bore-
dom, flow, and overload states exceeded 65%. Song et al. [66] pro-
posed the EEG Conformer model, which extracts both local and
global features within a single EEG classification framework. By
learning local features through one-dimensional convolution and
capturing correlations between local time features through self-
attention mechanisms, it achieved state-of-the-art performance on
three public EEG datasets.

Although existing models can detect flow states through EEG
signals, there are obvious deficiencies in analyzing the dynamic
states of flow. On the one hand, there is a lack of an EEG database
that describes the dynamic states of flow experiences from a process
view. On the other hand, the technology for extracting dynamic
frequency domain features is still immature. Existing methods of-
ten focus on simple measurements, such as the energy intensity
in specific frequency bands. Although intuitive, they are difficult
to capture deeper and more nuanced frequency domain dynamic
changes, such as complex inter-band interactions, non-linear evolu-
tion trends, and subtle time-frequency changes. These limitations
affect the accuracy of dynamic flow state recognition and hinder a
detailed portrayal of users’ true flow experiences. To fill these gaps,
this study will construct the first EEG dataset that describes the
dynamic changes in the flow process from a process view. The next
section will introduce the development of experimental tasks for
inducing dynamic flow states.

3 TASK OF INDUCING FLOW EXPERIENCE
Previous research on flow has often focused on distinguishing be-
tween flow and non-flow states, without delving into the dynamic
changes within the flow state itself [39, 55]. In this study, we de-
signed anHCI task to induce different dynamic states and intensities
of flow experience. During the experimental task, participants are
multiply sampled to report the current flow state and intensity, so
as to record the changes of flow at different time points in detail,
which is helpful to in-depth understanding of the dynamic flow
states from a process view.

3.1 Design Principles
To construct an effective task for inducing flow, we considered a
variety of game activities, including "Whac-A-Mole", "Tetris" et al.
[27, 75, 76], and referenced studies on the emotional and physiolog-
ical aspects of these games [50, 51, 72]. According to the research
purpose, the selection criteria of the task were as follows:

• The game should better be well-known to avoid adding ad-
ditional cognitive load to the participants.

• The experimental task should be straightforward, with sim-
ple and easy-to-learn operations.

• The difficulty of the experimental task should be easily ad-
justable to accommodate testers of varying skill levels.

• The duration of the experimental task should be reasonable
and offer some flexibility.

• The game should maintain a seamless operational flow, un-
affected by uncontrollable difficulties (e.g., Unlike the game
of Tetris, where misplacing a block can lead to an uncontrol-
lable increase in difficulty. This not only disrupts the delicate
balance of challenge manipulation within the game but also
undermines the fluidity of participants’ actions, as the un-
expected rise in complexity can quickly derail the smooth
progression of their gameplay strategies.)

After a comprehensive comparison of existing tasks, we decided
to design a task based on the "Whac-A-Mole" game, which has been
demonstrated to be effective in inducing different flow states [75,
76]. It involves targeting and hitting a certain number of monsters
or moles, with challenge level adjustment made by varying the
number and frequency of appearances of these targets. It can well
meet the above criteria, and thus was chosen by this study to induce
flow experience.

3.2 Task Goal
Previous research has indicated that the use of themes and nar-
ratives can enhance the degree of engagement and presence of
participants [1, 5, 52]. Based on the storyline of a two-user version
of the "Whac-A-Mole" game for the induction of flow [76], we de-
veloped a single-user version and designed the storyline as follows:
"You run a farm that produces and sells vegetables and other crops.
A group of moles is trying to steal your products, and you need to
protect your crops and fight off the moles to maximize your profit."
Consequently, the task goal of the participants is to achieve higher
profit score as much as possible. The score depends on the number
of moles that have been successfully hit by the participants.
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3.3 Difficulty Adjustment
Based on the flow channel model 2, achieving flow experience
requires a balance between the individual’s skill and the challenge
level of task [15, 75]. Therefore, the flow-inducing task should
support participants to adjust the task difficulty according to their
own skill. Note that dynamic flow does not assume that the task is
inherently dynamic. Rather, controlled difficulty modulation serves
as an experimental lever to enhance flow occurrence efficiency. In
this game, four moles appear each time and their escape speed can
be set at five levels. Participants are allowed to quickly adjust the
task difficulty once every one-minute interval to achieve an optimal
task-difficulty balance.

3.4 Game Interaction and Feedback
The participants need to use the mouse to click on the moles ap-
pearing on the screen. The game interface shows the task difficulty,
task countdown and real-time score in the upper right corner. The
"Whac-A-Mole" game interface is shown in Fig.3b.

3.5 Sampling Method
Unlike most previous studies which measured flow experience only
once after the task, this research is to capture more immediate
and dynamic instances of flow states. Referring to the Experience
Sampling Method [54], we sampled the flow experience multiple
times during the task. In this study, each round of the game lasts 5
minutes. During the game, the participant experience is sampled
every minute, as shown in Fig.3c and Fig.3d (5 samples per round).
When each sample is conducted, an evaluation interface is designed
to pop out and ask participants to score the dynamic states and
perceived intensity of flow, then adjust the task difficulty. Specifi-
cally, the dynamic states (e.g., upgoing, downgoing) being scored
correspond to the transition dimension, which describes directional
changes between flow states, while the perceived intensity ratings
reflect the progression dimension, capturing the onset, develop-
ment, peak, or decline of flow intensity over time. We adopt the
following measures to ensure the validity of sampling data:

• To ensure that participants fully understand the concept of
flow experience before entering the game, a detailed descrip-
tion of the concept and examples will be given to them.

• As for dynamic flow states, this study defines five states (no
flow, low state, high state, upgoing, and downgoing) and
designed a brief scale to report them (Fig.3c).

• In terms of flow intensity, the use of the flow questionnaire
with multiple items will break the continuity of participants’
flow state and decrease the validity of the measurement
[56]. To minimize disruption, this study used a single-item
measure to measure the flow intensity [36, 76]. The item
was developed from Csikszentmihalyi’s flow questionnaire
[54, 60] by Zhang et al. [76], scoring on a Likert scale ranging
from 0 (no flow) to 3 (high flow) (see Fig. 3d).

• To minimize disruption to the continuity of the game expe-
rience, the game scene remains visible when the evaluation
interface appears. Fig.3c shows the interface.

• To further ensure the effectiveness of the single-item mea-
sure in experience sampling, a rate-rerate method is adopted

to minimize the potential measurement error [21]. Specifi-
cally, this study requires participants to review the recorded
video immediately after completing the task to verify the
accuracy of the scoring. Participants are asked to review
each sampling moment (aligned with the timestamps in the
video) and confirm or revise their initial ratings. This process
allows participants to contextualize their initial judgments
with the actual task progression, enhancing the reliability of
the flow labels.

4 DATASET CONSTRUCTION
4.1 EEG Data Collection
4.1.1 Participants. The experimental data was collected from 94
volunteers (18-50 years) recruited from a local university. The par-
ticipants were all in good health, without a history of neurological
disorders, and had a comprehensive understanding of the tasks.
None of the participants experienced alcohol consumption, exces-
sive fatigue, medication use, or illness before the experiment. The
study was conducted in accordance with the guidelines of the Dec-
laration of Helsinki and approved by the Human Research Ethics
Committee of Shandong University. Informed consent was obtained
from each participant.

4.1.2 Data Collection Devices and Environment. In the study of
flow state recognition based on physiological signals, various EEG
recording devices are available. To minimize discomfort from wear-
ing device interfere the flow experience, we selected a portable EEG
device for data collection.

During the experiment, we used the EMotiv Epoc X, a light-
weight head-mounted device, to record multi-channel EEG signals.
Epoc X is equipped with 14 EEG sensors and 2 reference sensors,
with a sampling rate of 256Hz. The electrode placement follows
the 10-20 international system, including channels AF3, F7, F3, FC5,
T7, P7, O1, O2, P8, T8, FC6, F4, F8 and AF4 [43], as shown in Fig.3a.
We selected the Emotiv Epoc X due to its ease of use, practicality,
and minimal physical constraints. It has also been used effectively
in the building of high-quality EEG datasets related to flow expe-
rience and emotions [32, 46, 57, 69, 77]. To balance the device’s
portability (critical for maintaining a natural flow experience) with
the signal quality requirements for accurate flow state analysis,
we implemented movement restrictions during data collection to
minimize motion artifacts in EEG signals and applied Independent
Component Analysis (ICA) to further remove residual noise.

4.1.3 EEG Data Collection Process. The EEG data collection pro-
cess is illustrated in Fig.4. It includes two phases.

(1) Phase 1: Preparation
We first introduced to the participants the concepts related to

the flow experience and ensured that they fully understood them.
Then, we introduced to the participants the experimental task,
the objectives, and the operational method and ensured that they
fully understood how to perform the task. Next, they completed a
questionnaire to collect demographic information. after that, they
were fitted with EEG signal collection equipment.

(2) Phase 2: Data Collection
In the second stage, data collection is carried out as follows:
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14-channel
Electrode
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(a) Data Collection Process (b) Game Interface

(c) Flow State Selection (d) Flow Intensity Selection

Figure 3: EEG signal data collection and game scenarios: (a) shows the brain signal setup with 14 EEG channels marked; (b)
presents the game start screen; (c) depicts the flow state selection; (d) displays the flow intensity interface.

Participants were required to sit and relax for three minutes to
stabilize their physiological indicators to baseline levels, facilitating
the calculation of baseline EEG values for subsequent experiments.

After the rest period, participants went to the game phase and
played three rounds of the game task. The starting difficulty levels
for the three rounds were varied to capture various dynamic flow
states. As introduced in Section 3.5, flow experiences were sampled
during this period.

The researchers monitored the EEG data of the participants
during each game session individually. Any anomalies in the signals
were recorded and considered for exclusion from the subsequent
analysis. The EEG data collection process for each participant took
approximately 30-40 minutes. Finally, the EEG samples were labeled
and prepared based on flow scores obtained from the participant
experience sampling, facilitating the organization of the dataset for
further analysis. Fig.3a illustrates the EEG data collection process.

Currently, there is still no completely interference-free method.
To minimize interference during data collection, we highlighted sev-
eral design principles in Section 3.1. Moreover, the "Whac-A-Mole"
task paradigm used in this paper has been proven effective in main-
taining flow continuity during one-minute sampling interval [76].

Post-hoc video reviews indicated that participants did not perceive
notable interference throughout the sampling process.

4.2 Dataset Organization
In this study, the reasonable organization of the dataset is of great
significance for the accurate analysis and mining of information re-
lated to the participants’ states. We started with the raw 14-channel
EEG data obtained from the Emotiv Epoc X device and gradually
carried out a series of rigorous and systematic data processing pro-
cedures. The aim is to construct a high-quality and representative
dataset, which lays a solid foundation for the subsequent in-depth
research.

• EEG Signal Segments. The raw 14-channel EEG data (AF3,
F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8 and AF4)
obtained from the Emotiv Epoc X were saved in EDF format
and pre-processed using the EEGLAB toolbox. Initially, raw
data were imported and electrode positioning was carefully
verified to ensure accurate signal capture. The data were
then re-referenced to the average reference to standardize
the recordings.
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Figure 4: The data collection flowchart includes the Testing Preparation Phase and the Data Collection Phase. Each participant
is required to complete three rounds of the game and choose their current flow state and intensity in each round.

• Filtering and Nromalization. Filtering was performed to
remove specific frequency interferences, with a bandpass
filter applied between 1 Hz and 50 Hz using a 4th order
Butterworth filter [27]. Each data set was subsequently seg-
mented into 1-minute intervals to align with the timing of
the flow ratings of the participants. This process resulted in a
series of data segments, each corresponding to a specific flow
rating moment. In addition, Z-score normalization and non-
overlapping sliding windows of size 256 are applied in the
training pipeline to reduce volatility and non-stationarity.

• Dataset Composition. Further prepossessing involved EEG
signal decomposition and removal of eye movements, in-
cluding ICA and detection of eye movements artifacts, im-
plemented using specialized EEGLAB plugins and custom
scripts. Operations of translating and scaling the samples
are also performed to augment the samples for class bal-
ancing. The final dataset comprises 94 usable samples, each
representing three experimental sessions per participant. It
includes flow label information (flow intensity and state, la-
bels selected by the participants and system), timestamps
(game start, experience sampling, and game end), and EEG
data from 14 channels per minute of each session. Partici-
pants were recruited across various age groups to ensure the
diversity and representativeness of the dataset.

The dataset of this paper is released at : https://drive.google.com/
drive/folders/1IFO6BrsaMI112sd793-t27_s8Fsglc7Q?usp=drive_link.
Detailed information about the data is also summarized in the
"Readme.txt".

5 FLOW RECOGNITION BASED ON
FREQUENCY AWARE CONVOLUTIONAL
TRANSFORMER

To address the challenges of representing temporal variations in
EEG signals and the complex inter-channel relationships when rec-
ognizing flow experience, this paper introduces FA-ConFormer, a

method that leverages frequency domain density representations
combined with cross-channel convolutions and global attention
fusion to produce flow state recognition results, including the inten-
sity of flow and its temporal dynamics. As illustrated in Fig.5, the FA-
ConFormer captures microstate transitions, complementingminute-
level subjective scores to enable "macroscopic trend-microscopic
feature" analysis. FA-ConFormer consists of three primary modules:
In the frequency representation module, the micro-differential
entropy and PSD are calculated from the EEG signal samples to
extract key frequency domain features for each channel. The cross-
channel fusion module then integrates information across chan-
nels and features through convolution operations. In the global
attentive learning module, the fused features along with the clas-
sification tokens are fed into a lightweight five-layer Transformer
network, where the information in the global frequency domain is
integrated through attention mechanisms, before being passed to
linear classifiers for identifying the flow intensity and flow states.

5.1 Frequency Representation
The selection of frequency-domain EEG features is grounded in
the neurocognitive mechanisms underlying flow experiences and
is consistent with tenets of flow theory as well as cognitive models
such as transient hypofrontality.

We chose the𝜃 (4–7Hz),𝛼 (8–12Hz) 𝛽 (13–30Hz), and𝛾 (31–50Hz)
bands’ PSD and BP to capture complementary aspects of flow dy-
namics. For instance, 𝜃 band activity has been closely linked to
heightened attentional focus and executive control—hallmarks of
the flow state. An increase in prefrontal 𝜃 band power (indexed by
𝐵𝑃𝜃 ) directly corresponds to the deep concentration described by
flow theory, during which an individual can sustain continuous task
engagement. 𝛼 band activity, quantified via 𝐵𝑃𝛼 , reflects optimal
cognitive efficiency and emotional stability. Moderate 𝛼 oscillations
in prefrontal and central regions (as measured by PSD) align with
the "challenge–skill balance" core to flow, in which task demands
match individual capabilities. This balance minimizes cognitive dis-
sonance and enables the effortless immersion characteristic of flow.

https://drive.google.com/drive/folders/1IFO6BrsaMI112sd793-t27_s8Fsglc7Q?usp=drive_link
https://drive.google.com/drive/folders/1IFO6BrsaMI112sd793-t27_s8Fsglc7Q?usp=drive_link
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Figure 5: Illustration of FA-ConFormer, which integrates frequency domain features through a convolutional network and
implements attentive learning based on a Transformer, thereby achieving the classification of flow intensity and state from
EEG signals.

We also include DE to index signal complexity, which decreases in
flow due to more regularized neural activity (e.g., synchronous 𝜃
oscillations). This reduction in complexity embodies the "ordered
consciousness" feature of flow, wherein cognitive resources are
allocated efficiently without extraneous interference. In addition,
mean value (MV) provides a baseline reference, highlighting devia-
tions associated with flow onset (e.g., the shift from resting-state 𝛼
dominance to task-relevant 𝜃 engagement).

To better describe the processing of our method, we discretely
form EEG signals as a 2D matrix A = {𝑎𝑚,𝑛 |𝑚 = 1, ..., 𝑀 ;𝑛 =

1, ..., 𝑁 }, where𝑀 indicates the number of channels, and 𝑁 is the
number of sampling steps. To obtain a frequency domain represen-
tation, the data of each channel is first transformed by a discrete
Fourier transformation:

𝐹 (𝑖,𝑚) = ∑𝑁
𝑛=1𝑎𝑚,𝑛 · 𝑒−2𝜋𝑛

𝑖
𝑁 (1)

where 𝑖 is the frequency index and 𝑒 is the base of the natural
logarithm.

Additionally, to extract the representation in the frequency do-
main, we computed the power spectrum 𝑃𝑚 (𝑓 ) and 𝑃𝑆𝐷 :

𝑃𝑚 (𝑓 ) = 1
𝑁

(
|𝐹 (𝑖,𝑚) |2 + |𝐹 (𝑁 − 𝑖,𝑚) |2

)
(2)

PSD(𝑓 ) = 1
𝑀

𝑀∑︁
𝑚=1

𝑃𝑚 (𝑓 ) (3)

where 𝑓 is the frequency value associated with 𝑖 .
Considering the characteristics of different frequency bands of

PSD, we combined the signals of 𝜃 (4𝐻𝑧 ≤ 𝑓 ≤ 7𝐻𝑧), 𝛼 (8𝐻𝑧 ≤ 𝑓 ≤

12𝐻𝑧), 𝛽 (13𝐻𝑧 ≤ 𝑓 ≤ 30𝐻𝑧), and 𝛾 (31𝐻𝑧 ≤ 𝑓 ≤ 50𝐻𝑧) bands to
obtain the BP:

𝐵𝑃 =
1
|𝐵 |

∑︁
𝑓 ∈𝐵

PSD(𝑓 ) (4)

where B is the frequency index satisfying 𝑓𝑠𝑡𝑎𝑟𝑡 ≤ 𝑓 ≤ 𝑓𝑒𝑛𝑑 .
The aforementioned features indicate details like density and

energy in the frequency domain, where as the DE can reveal hidden
attributes especially in the analysis of non-stationary, nonlinear, or
intricate signals. The formula for calculating 𝐷𝐸 is as follows:

𝐷𝐸 = log(2𝜋𝑒𝜎2/2) (5)

where 𝜎2 is the variance of 𝑎𝑚,𝑛 .
Finally, MV of the matrix are combined in to the features:

𝑀𝑉 =
1
𝑁

𝑁∑︁
𝑖=1

𝑎𝑚,𝑛 (6)

5.2 Cross-channel Convolutional Fusion
The cross-channel convolutional fusion mechanism is designed
to emulate the inter-regional neural co-activation characteristic
of flow states as described by flow theory. Flow experiences de-
pend on the synchronized activity of distributed cortical areas—for
example, prefrontal regions that regulate attentional control and
parietal regions that integrate multisensory input. By capturing
local neighborhood dependencies among EEG channels and simu-
lating functional connectivity between distinct brain regions during
flow, this mechanism supports the integration of information across
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regions to sustain global task engagement. It addresses a key limita-
tion of conventional approaches, which often overlook such global
dynamics, by enhancing sensitivity to subtle inter-channel interac-
tions and extracting multi-scale patterns (e.g., cross-channel 𝛼/𝛽
balance) critical for discriminating dynamic flow sub-states like
upgoing and downgoing.

To implement this mechanism, the frequency representation
module first extracts features including𝐵𝑃𝜃 , 𝐵𝑃𝛼 , 𝐵𝑃𝛽 , 𝐵𝑃𝛾 , 𝑀𝑉 and
𝐷𝐸 from 14 channels. We rearrange these features into a matrix x =

{𝑥𝑖, 𝑗 |𝑖 = 1, ..., 14; 𝑗 = 1, ..., 6}. The x encodes frequency information
in EEG signals, and to enhance the fusion among channels, we
introduce a convolutional layer to further fuse features.

The convolutional layer integrates information within a neigh-
borhood by sliding a convolution kernel across the input. Utilizing
multiple convolution kernels allows for the extraction of various fea-
tures from the input. The process of convolution operation𝐶𝑜𝑛𝑣 (.)
is formulated as:

g = 𝐶𝑜𝑛𝑣 (x) (7)

where the fuse features g = {𝑔1, ..., 𝑔𝐽 }.

5.3 Global Attentive Learning for Flow
Recognition

The design of the Global Attentive Learning Module is highly
aligned with the neurocognitive mechanisms of flow, particularly
echoing the core role of the prefrontal cortex in top-down atten-
tional control. According to flow theory, in a flow state, the pre-
frontal cortex sustains immersive engagement by integrating in-
formation across time and cortical regions, coordinating global
attention. The Global Attentive Learning Module in FA-ConFormer
precisely simulates this mechanism: it incorporates a five-layer
Transformer, which captures long-range temporal dependencies
and cross-channel correlations in EEG signals through the introduc-
tion of a [CLS] classification token and multi-head self-attention
(MSA) mechanism, thereby integrating global frequency dynamics
(e.g., the time-varying interaction between 𝛼/𝜃 bands) — this is
consistent with the function of the prefrontal cortex in filtering
irrelevant stimuli and prioritizing task-relevant information during
flow states. Subsequent feed-forward networks (FFNs) and layer
normalization further reinforce key features (such as bursts of 𝜃
band activity associated with peak flow intensity), embodying the
"automaticity" characteristic of flow (efficient allocation of cogni-
tive resources without deliberate effort). This architectural design
enables the model to accurately predict dynamic flow sub-states
(e.g., upgoing).

5.3.1 Transformer-based Feature Learning. The matrix g contains
varies local information of EEG signals, so in the global attentive
learning module, we design a five-layer Transformer for learning
the global information. It adds a class token [CLS] to the input g,
and the new input sequence is {[𝐶𝐿𝑆], g1, ..., g𝐽 }.

The Transformer block consists of two main components: a MSA
and a FFN, each previously connected to a Layer Normalization.
Each multi-layer perception layer (MLP) consists of two 2048-dim
fully connected layers, with a dropout layer behind it. The activation
function used in this paper is GeLu. The Transformer block can be
described as:

Table 1: Parameter settings of FA-ConFormer

Module Hyperparameter Value
Feature Extraction Input Dimension 14

Convolutional Layer
Padding Type same
Stride Size 1
Kernel Size 3

Transformer Encoder

Model Dimension 128
Number of Heads 8
Number of Layers 5
Dropout Rate 0.1
Dimension of Feedforward 2048

Classifier Number of Flow Intensity 4
Number of Flow state 5

z𝑙+1 = FFN𝑙 (MSA𝑙 (z𝑙 )) + z𝑙 (8)
where z is the attentive features, and the index of Transformer
block is 𝑙 = 1, ..., 5.

5.3.2 Classifier. After feature extraction, the linear classifiers task
the first token of z as input, simultaneously generating flow state
P𝑠𝑡 and flow intensity P𝑖𝑛 . We use cross-entropy as the recognition
loss during the training.

6 EXPERIMENTS
6.1 Experimental Setup
In this paper, the whole dataset is divided into training set, val-
idation set and test set, the proportions are 80%, 10% and 10%,
respectively. The models in this experiment are implemented based
on Pytorch. During training, the batch size is set to 32, the optimizer
is Adam, and the initial learning rate is 1e-4 training for 100 epochs.
The loss function in this experiment is cross-entropy loss, which
can be formulated as

𝐿 = −
∑︁

𝑦𝑖 log𝑝𝑖 (9)

where 𝐿 is the value of the cross-entropy loss function, 𝑦𝑖 is the
ground-truth label, 𝑝𝑖 is the predicted probability of the model for
a single output. Finally, this experiment iteratively optimizes the
model parameters through multiple training cycles while monitor-
ing the loss value during training.

In the recognition of flow state and flow intensity, Precision,
Recall, F1-score and Accuracy were adopted in this paper to com-
prehensively evaluate the performance of different classifiers on
flow intensity and flow state recognition tasks. Accuracy reflects
the proportion of samples that the classifier correctly identifies as
positive, while recall measures the classifier’s ability to identify all
actual positive samples. The F1 score serves as a harmonic average
of accuracy and recall, providing a single performance metric that
balances the two. Finally, accuracy represents the ability of the
classifier as a whole to correctly predict the sample. Table 1 lists
the parameters for identifying the flow state.

6.2 Performance Comparison
In order to comprehensively evaluate the effectiveness of the pro-
posed model, we selected widely used models in the field of flow
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recognition as benchmarks for performance comparison, including
K-Nearest Neighbors (KNN) and Support Vector Machines (SVM),
which showed flexibility in EEG recognition [42, 74]. In addition, ad-
vanced deep learning methods are also compared, including Convo-
lutional Neural Network combined with Long Short-Term Memory
(CNN-LSTM) [49], and Transformer-based models [66, 67, 71].

6.2.1 Results of Flow Intense Recognition. The experimental results
on the flow intensity recognition task are shown in Table 2, from
which we can observe:

• The FA-ConFormer model demonstrates a significant
advantage in the recognition of flow intensity, partic-
ularly in terms of precision and accuracy, showing a
high recognition capability. The FA-ConFormer model
achieved a precision of 77% and an accuracy of 71% in the
recognition of flow intensity. This performance is notably
superior to that of traditional machine learning models such
as SVM, which recorded a precision of 44% and an accuracy
of 44%, and even exceeds that of deep learning models such
as EEG Conformer, which attained a precision of 71% and
an accuracy of 68%. The FA-ConFormer model optimizes
the extraction of frequency domain features through its ad-
vanced architecture, which compared to the simple feature
extraction methods of traditional models, can more accu-
rately reflect the subtle changes indicative of the flow state.

• The FA-ConFormer model demonstrates improved bal-
ance and robustness in the multitask classification of
flow intensity, effectively discriminating among vari-
ous flow intensity categories. In multi-classification tasks
for flow intensity, the FA-ConFormer model achieved an F1
score of 74%, surpassing the 45% of SVM and 67% of EEG
Conformer. This performance highlights the strength of FA-
ConFormer in managing imbalanced datasets. The model’s
advanced features, such as positional coding and multi-head
self-attention, enhance its ability to interpret EEG signal time
series and consider multiple signal features simultaneously.
These contribute to its improved sensitivity and accuracy in
recognizing flow intensity classes.

• The FA-ConFormer model exhibits a high recall rate,
facilitating the comprehensive identification of all flow
intensity levels and minimizing omissions, which is
essential for real-time monitoring and responsiveness
to participant states. The FA-ConFormer model excels
in the recognition of flow intensity, especially with com-
plex data, achieving a 70% recall rate compared to 46% for
SVM and 62% for EEG Conformer. Its architecture, which
combines deep convolutional layers with the Transformer,
effectively processes both spatial and temporal features of
EEG signals. This dual approach to data fusion significantly
boosts recall, ensuring comprehensive identification of flow
intensity states and minimizing missed detections. This per-
formance is crucial for real-time applications that require
prompt detection and response to participant states.

6.2.2 Results of Flow State Recognition. The experiment also pro-
vides the results of flow state recognition. Table 3 lists in detail

Table 2: The flow intensity recognition results of different
classifiers

Model Precision Recall F1-score Accuracy

KNN 0.40 0.44 0.42 0.48
SVM 0.44 0.46 0.45 0.44
CNN-LSTM 0.40 0.43 0.41 0.47
Transformer 0.43 0.54 0.48 0.53
MAFormer 0.58 0.64 0.60 0.61
MV-Transformer 0.57 0.67 0.61 0.64
EEG Conformer 0.71 0.62 0.67 0.68
FA-ConFormer 0.77 0.70 0.74 0.71

the performance indicators of each classifier in the task of flow
intensity recognition.

• The FA-ConFormer model achieves superior precision
and accuracy in the domain of flow state recognition.
In the field of flow state recognition, the FA-ConFormer
model has shown exceptional performance, with precision
and accuracy rates of 72% and 68%, respectively. These fig-
ures exceed the 40% precision and 46% accuracy of traditional
machine learning models like SVM, as well as the 70% pre-
cision and 65% accuracy of the EEG Conformer model. The
FA-ConFormer model’s architecture, which fuses deep con-
volutional layers with a Transformer encoder, is adept at
handling sequential EEG data, capturing intricate patterns
and fluctuations, thereby enhancing the precision and accu-
racy of flow state recognition for real-world applications.

• The FA-ConFormer model exhibits exceptional com-
prehensive performance in flow state recognition, par-
ticularly in the recognition of dynamic changes in flow
states. The FA-ConFormer model excels in the recognition
of flow state, achieving an F1 score of 68%, surpassing 47% of
the SVM and 65% of the EEG conformer model. Its advantage
lies in the multi-head self-attention mechanism, which pro-
vides heightened sensitivity to flow state changes, especially
during transitions. This precision is vital for accurate flow
state recognition, underscoring the FA-ConFormer model’s
effectiveness in scenarios demanding sensitive state transi-
tion detection.

• In comparison to the FA-ConFormermodel, traditional
models such as SVM exhibit reduced efficacy in flow
state recognition. In the field of flow state recognition,
traditional machine learning models such as SVM show a
recall rate of only 45%, behind the 65% of the FA-ConFormer
model. This indicates that traditional models struggle to cap-
ture nuanced changes in the EEG data, which are critical for
recognizing flow states. Their reliance on manual feature ex-
traction is insufficient for the complex and high-dimensional
nature of EEG signals, especially during dynamic state tran-
sitions. Advanced models like FA-ConFormer, with their
sophisticated analytical capabilities, are better equipped to
handle the intricacies of EEG data analysis, making them
more effective for flow state recognition tasks.
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• The performance of the flow intensity recognition task
is generally better than that of the flow state recog-
nition task. It may be due to the fact that the flow state
recognition involves a more detailed classification, leading
to the reduction of various indicators, such as the accuracy
of flow recognition.

Table 3: Flow state recognition results of different classifiers

Model Precision Recall F1-score Accuracy

KNN 0.46 0.42 0.44 0.44
SVM 0.40 0.45 0.47 0.46
CNN-LSTM 0.45 0.40 0.42 0.43
Transformer 0.58 0.48 0.52 0.56
MAFormer 0.60 0.50 0.55 0.59
MV-Transformer 0.65 0.55 0.60 0.62
EEG Conformer 0.70 0.60 0.65 0.65
FA-ConFormer 0.72 0.65 0.68 0.68

To ensure the stability and reliability of the model performance:

• The performance plots of the model under 5 random seeds
demonstrate that FA-ConFormer stably outperforms EEG
Conformer in precision, recall, F1-score, and accuracy, with
smaller performance fluctuations, reflecting stronger robust-
ness.

• This study employed a ten-fold cross-validation strategy
on the dataset, with the results as follows: In flow intensity
recognition, FA-ConFormer achieved a precision of 0.7072±0.0132,
which is approximately 7.5% higher than that of EEG Con-
former (0.6578±0.0198). In flow state recognition, its preci-
sion reached 0.6878±0.0100, showing an approximately 6.2%
improvement compared to EEG Conformer (0.6476±0.0177).
Additionally, FA-ConFormer outperformed EEG Conformer
and other comparative models in indicators such as recall
and F1-score across both tasks, verifying its excellent classi-
fication performance and generalization ability. The results
of leave-one-out cross-validation show that in both flow in-
tensity and state recognition, FA-ConFormer outperforms
Transformer and EEG Conformer in indicators such as pre-
cision and recall, demonstrating better adaptability to data
with individual differences.

• The results of the permutation test (10,000 permutations)
show that two-tailed p-values for all indicators in flow in-
tensity/state recognition were all < 0.001, indicating highly
significant differences. The Bootstrap confidence intervals
(10,000 samplings) for mean differences (e.g., [0.0346, 0.0641]
for flow intensity precision) do not contain 0, confirming
the reliability of the differences. Cohen’s d effect sizes (e.g.,
8.9437 for flow state recall) are all much greater than 0.8,
indicating a "large effect," which means the advantages of
FA-ConFormer are significant and practically meaningful.

All these results are provided in the Appendix.

6.3 Visualization Analysis of Flow Intensity and
Flow States

In this section, our goal is to visualize the changes in flow states
during gameplay and their relationship with psychological states.
To clearly present the various stages of the flow, we visualized the
data using line graphs and bar charts. The line graph represents
the flow intensity, which is divided into four levels: no flow, low
flow, medium flow, and high flow (levels 0 to 3). The bar chart uses
different colors to indicate the changes in flow states: gray (no
flow), red (maintain low state), blue (maintain high state), green
(upgoing), and orange (downgoing). These visualization figures are
expected to help researchers enable flow-state analysis, support
adaptive interface design, and facilitate users to better understand
the dynamic changes of their flow intensity and flow states.

Specifically, we first utilized the FA-ConFormer model based on
EEG signals to obtain the flow state data of each participant during
the game. Then, we selected data from different participants with
similar flow intensity variations over three game rounds to ensure
a comprehensive analysis of the changes in flow states. To enhance
the stability and interpretability of the data, we applied a median
filter with a window size of 5 to the predicted results.

6.3.1 Analyzing the Depiction of Variations in Flow State Intensity.
In the visualization process, we analyzed data from different partici-
pants across three rounds of the game. According to Fig.6, when the
flow intensity is generally high (mainly between 2 and 3), there are
more frequent and longer periods of high-flow states. In contrast,
when the flow intensity is lower (mainly between 1 and 2), there
are more frequent and longer periods of low-flow states.

• Sustained High-flow State: For Fig.6(a) and Fig.6(b), it can be
observed that when the flow state shows an upward trend
(green), the flow intensity typically increases or is expected
to increase shortly thereafter. This suggests that changes
in flow state may serve as a predictor for variations in flow
intensity. Additionally, the results indicate that under high-
flow conditions, participants’ experiences of increased flow
states are more consistent with changes in flow intensity.
This implies that, under high-flow conditions, participants
aremore sensitive to changes in flow states. In contrast, when
the flow state declines, participants may be less sensitive to
the differences between declining states and low-flow states.

• Sustained Low-flow State: In contrast, for Fig.6(c) and Fig.6(d),
it can be observed that the two cases predominantly exhibit a
low-flow state (red), with overall lower intensity. Unlike high-
flow states where increases in the flow state were predictive
of rising intensity, changes in flow state during low-flow
states do not consistently align with changes in intensity.
This may be because the sensitivity to flow state fluctuations
appears to be reduced in low-flow states.Specifically, the
low-flow state itself has inherent instability characteristics,
making it difficult to present a stable corresponding pattern
between the state and intensity changes. Meanwhile, when
humans are in a low-flow state, their perceptual sensitiv-
ity to their own flow fluctuations diminishes. It becomes
rather challenging to accurately capture the association be-
tween the state and intensity, thus resulting in inconsistent
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Figure 6: Visualization of flow intensity and flow state: The vertical axis represents flow intensity, the horizontal axis is in five
seconds, and the color of the filling bar represents different flow states. Each row represents the model’s prediction of the three
rounds of game flow status and intensity for different participants.

changes between the two. Additionally, when examining the
progression across game rounds (1st, 2nd, and 3rd), distinct
patterns emerge. For some participants, achieving high flow
becomes increasingly difficult in subsequent rounds, while
others maintain similar flow patterns despite varying diffi-
culties. This suggests that individual differences influence
how flow dynamics evolve across game rounds.

6.3.2 Case Study of Inconsistencies Between Flow State and Intensity.
In analyzing flow state and intensity, we observed that intensity is
focused solely on momentary concentration levels, which does not
fully capture the overall flow experience or its long-term effects.
To address this limitation, we have integrated flow state analysis
into our visualization framework, as illustrated in Fig.7. This in-
tegration allows for a more comprehensive understanding of the
flow experience, its long-term benefits, and individual differences,
thereby facilitating a deeper exploration of the flow phenomenon.

• Case (a): As shown in Fig.7(a), although the flow intensity
(i.e., the overall height and frequent fluctuations of the curve)
appears similar between the left and right graphs, there are
significant differences in the flow states. A more granular

analysis reveals that the left figure exhibits more pronounced
intensity fluctuations and a higher number of non-flow states.
In contrast, the right figure also shows considerable fluc-
tuations but with lower frequency, and there are notable
low-flow or non-flow states around positions 4, 24, and 48.
These interruptions in the flow state may contribute to the
perceived lower overall intensity.

• Case (b): As shown in Fig.7(b), both graphs exhibit minimal
fluctuations, the primary distinction being flow intensity.
From a state perspective, whether at persistently high or per-
sistently low levels, the flow state remains relatively stable
with few transitions. This observation may be attributed to
the minimal variation in flow intensity or may indicate the
stability of the flow state across different intensity levels.

• Case (c): As illustrated in Fig.7(c), there is a further reduc-
tion in fluctuations, leading to a smoother profile. The flow
states in both graphs predominantly exhibit an upward or
downward trend, without transitioning into sustained high-
or low-flow states. This pattern may be due to the reduced
variation in flow intensity, or it might indicate that the flow
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Figure 7: The diversity of flow experiences is illustrated through three distinct flow patterns, each demonstrating unique
characteristics in flow intensity and fluctuation.

states are predominantly trending in a single direction rather
than oscillating between high and low levels.

6.3.3 Case Study of Individual Flow Changes in Flow Intensity and
Flow State. Considering the impact of individual personality differ-
ences on flow experiences, this section will analyze the personal-
ized characteristics of flow intensity and flow state at the individual
level. It will also explore the implications of these characteristics
for participant experience design. As shown in Fig.8, we selected
the predicted flow states and flow intensities for two participants
over three rounds of gameplay.

In Fig.8(a), it can be observed that the participants primarily
experienced an upward flow state during the first round of the
game, with significant fluctuations in flow intensity. In the second
round, although the flow intensity continued to fluctuate frequently,
it remained mostly at higher values, indicating a transition from
an upward flow state to a high-flow state. In the third round, the
flow intensity was predominantly in the high range, and nearly all
participants experienced a high-flow state. These results suggest
that the task design and difficulty level were appropriate for the
participants.

Unlike the previously discussed participants, the subjects in
Fig.8(b) exhibited low levels of flow intensity across all three rounds.
In particular, the changes in flow intensity during the first and third
rounds showed a completely opposite trend compared to the earlier
participants: the flow intensity was relatively high in the first round,
while it was comparatively low in the third round. From the process
view of flow states, events reflecting high flow levels were more
frequent in the first round, but a marked decline began in the second
round, with flow states nearly continuously decreasing in the third
round. This suggests that the participants had a low level of interest
at the beginning of the experimental task, and their interest waned
as the task progressed. This phenomenon may be attributed either
to the task’s low difficulty or to a mismatch between the task format
and the participants’ interests.

In analyzing the aforementioned case, we found that relying
solely on strength levels is inadequate to fully capture the flow
experience. Significant inconsistencies between flow states and
their corresponding strengths across different visualizations re-
veal the complexity of flow experiences. To gain a comprehensive
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Figure 8: The variation in flow intensity and flow states across rounds among different individuals clearly reflects the differences
in psychological experiences in specific task contexts. By comparing the flow performances of various participants, key factors
influencing flow intensity can be identified, such as interest, skill matching, and environmental conditions.

understanding of participants’ flow states, it is essential to investi-
gate these inconsistencies, including analyzing multiple dimensions
such as individual differences, to achieve a more accurate under-
standing of the flow experience. Building upon this, we conducted a
further personalized analysis to explore deeper influencing factors
through a detailed examination of individual participants, such
as task difficulty and format. Therefore, further understanding of
flow can be achieved through visualization technologies. By real-
time monitoring and dynamic visualization of the participant’s
EEG signals, researchers can clearly present the various stages of
flow. This visualization not only allows researchers to observe and
analyze participants’ flow experiences during interactions more
intuitively, but also supports enhancing participant immersion and
engagement in activities more effectively. The findings provide
new insights for the development of human-computer interaction
experiences, suggesting the design of adaptive difficulty and format
tailored to individual characteristics to help participants maintain
high-flow states, thus enhancing the participant experience.

7 DISCUSSION
This paper explored a method to compute and visualize dynamic
flow state during the HCI activities based on multi-channel EEG sig-
nals from a process-oriented perspective. Several important points
are discussed below.

7.1 Granular Measurement of Flow
The introduction of the concept of flow states aids in the measure-
ment and identification of flow. Compared to descriptive methods
of the presence or absence of flow, or high, medium, and low inten-
sity of flow, we adopt a more granular approach with four levels of
flow intensity. While this provides a more detailed analysis, it also

increases the difficulty of characterizing each level due to individ-
ual differences. To address this, we have designed descriptions for
five flow states. On the one hand, states of continuous high-flow
and upward trajectories are generally easier for participants to dis-
cern. The low-flow state, on the other hand, is defined as when
participants have a certain level of immersion in the current task.

As far as we know, This work is the first attempt to dynamically
describe and calculate flow experience from the process view of
dynamic processes. We provide a research paradigm to achieve
this goal, including constructing flow induction tasks, defining
flow experience labels and sampling, constructing a multi-channel
EEG signal dataset, proposing targeted flow calculation models and
validating them, and visualizing the dynamic process of flow. When
predicting flow, we propose to focus on several dynamic states of
flow beyond just its intensity. The experiments conducted in Section
6 reveal that such an approach benefits both the identification
of flow states and the measurement of flow intensity, furthering
our understanding of flow. According to the final results, we have
achieved a more advanced method for detecting and visualizing
the dynamic characteristics of flow experience from EEG signals
than in previous studies [7, 12, 31], which has contributed to some
extent to research in this area.

7.2 Multidimensional Analysis of Flow
Dynamics

The combination of frequency domain and time domain informa-
tion facilitates more accurate identification of flow states. Flow
experience is a dynamic process characterized by complex varia-
tions in electroencephalogram (EEG) signals across different stages.
Frequency domain analysis reveals the power distribution and fre-
quency characteristics of EEG signals associated with specific cog-
nitive states, while time domain analysis provides insights into
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the dynamic changes and real-time features of these signals. By
integrating both types of information, we can more accurately cap-
ture the complexity and dynamics of flow states, thus enhancing
the accuracy and reliability of identification. Our experimental re-
sults support the effectiveness of this multidimensional approach,
demonstrating significant performance improvements in recogniz-
ing flow states and their intensity using the FA-ConFormer model.
Future research could further explore the EEG features of flow states
and leverage this information to design interventions that promote
flow experience, ultimately improving individual performance and
satisfaction across various tasks.

7.3 Introduction of the Dynamic Flow Dataset
and FA-ConFormer Model

The introduction of theDynamic FlowDataset and the FA-ConFormer
model represents a significant advance in the field of flow experi-
ence computing. These tools facilitate the real-time monitoring and
analysis of participants’ flow states during their interactions with
technology. Notably, the design of the FA-ConFormer framework
shares a profound intrinsic connection with flow theory. The global
attention mechanism of the Transformer within the model, which
integrates global information across channels and time, echoes
the top-down control functions of the prefrontal cortex in flow
theory. As the brain’s high-level cognitive regulatory center, the
prefrontal cortex is responsible for maintaining global focus and
coordinating activities across various brain regions during the flow
state, ensuring the individual’s overall grasp of the task. In contrast,
the hierarchical feature extraction and local dynamic modeling of
deep convolution simulate the automated and efficient information
processing process in the flow state by capturing local frequency-
domain features in EEG signals layer by layer (e.g., power changes
in specific frequency bands, subtle time-frequency dynamics). As
described by flow theory, when an individual enters a flow state,
task performance exhibits a fluency characterized by "no need for
deliberate effort," which stems from the automation and efficiency
of cognitive processing, reducing the cost of conscious control.

By precisely capturing changes in brain activity, the FA-ConFormer
model can identify when participants enter a flow state and how
the intensity of this state fluctuates over time. This capability for
real-time monitoring not only enhances researchers’ understand-
ing of the dynamic characteristics of the flow experience but also
opens up possibilities for designing interactions that better align
with participants’ psychological states. Furthermore, the predic-
tive capabilities of the FA-ConFormer model allow HCI systems
to proactively adjust task difficulty or provide timely feedback,
thereby maintaining or enhancing participant flow experiences.
Such predictive analytics create new opportunities in personalized
learning, game design, and workplace efficiency, enabling systems
to adapt dynamically to participants’ real-time states and optimize
their overall experiences. With the application of these tools, HCI
designers and developers can gain deeper insight into participant
needs and reactions in various contexts, ultimately leading to the
creation of more intuitive, engaging, and participatory interactive
environments. This profound understanding of flow states may
pave the way for new interaction design paradigms that prioritize
participant experience and cognitive efficiency.

7.4 Inspirations for Optimizing Interaction
Design

In the field of interaction design, flow regulation methods are of
crucial importance for enhancing the participant experience. In the
past, flow regulation mainly relied on the results of the flow state
or participant performance to dynamically adjust the difficulty of
the next task. For example, in a gaming scenario, the system would
only reduce the difficulty of subsequent levels after detecting that
players had a poor flow experience when they performed poorly in
a certain level. However, this result-based regulation method has
obvious lag. Participants might have endured a poor experience
for a while before receiving the system’s adjustment feedback. In
contrast, this study brings new breakthroughs to the optimization
of real-time interaction design by integrating the recognition and vi-
sualization methods for flow intensity and dynamic states. Through
the combination of line graphs and bar charts, these visualization
results directly provide researchers with a tool for quantitative
analysis of flow dynamics. They help researchers clearly identify
the associations between different flow states, task difficulty, and
individual skills, further laying a visual foundation for adaptive
interface design. Based on the results of Experiment 6.3.1 and Ex-
periment 6.3.3, we defined the "upgoing" and "downgoing" states in
the flow framework. These two states have significant predictive
value for flow changes.

By continuously monitoring the participant’s dynamic flow state,
the system can anticipate the trends of flow changes in advance.
For instance, when it detects that the participant’s flow state is
showing a "downgoing" trend, the system can proactively take mea-
sures, such as reducing the task difficulty or providing additional
support, to help the participant regain a smooth experience before
the participant’s flow experience actually deteriorates. When the
system identifies that the participant is in an "upgoing" flow state,
it can appropriately increase the challenge to further stimulate
the participant’s engagement and enthusiasm and maintain their
high-level flow experience.

This proactive intervention strategy based on dynamic flow
changes has stronger timeliness and initiative compared to the
traditional lag-based regulation method. It can precisely match the
participant’s state changes at different times and achieve real-time
optimization of tasks. This not only significantly improves the par-
ticipant experience, enhances the participant’s sense of immersion
and satisfaction, but also provides strong support for designers to
create personalized interaction experiences. Designers can leverage
this method to explore users’ unique needs and preferences and
customize personalized interaction solutions. In this way, prod-
ucts will have a greater competitive edge in the highly competitive
market, be able to provide users with a higher-quality interaction
experience that suits their current state, and effectively enhance
user loyalty and the market competitiveness of products.

7.5 Limitations and Future Work
There are still some limitations in this study that need to be ad-
dressed in future research.

First, expanding features from EEG signals to better de-
tect dynamic flow experience. There is potential to enhance
our EEG-based analysis for a more precise representation of the
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dynamic aspects of flow experiences. Although the current study
has successfully identified EEG patterns associated with flow, there
is an opportunity to explore a broader range of EEG features that
could offer a more comprehensive understanding of flow variabil-
ity. The next-step work could benefit from incorporating a wider
spectrum of EEG markers, which would enhance the sensitivity
and specificity of our model in capturing the subtle temporal dy-
namics of flow, leading to a more nuanced understanding of the
flow experience.

Second, enhancing EEG-based flow computation with inte-
gration of game content. The current EEG-based flow computa-
tion model is possibly further enhanced by integrating the content
of the game itself. The interaction between game mechanics and
participant psychology is a critical factor in the flow experience,
and the computation model might benefit from a more intimate
connection with the game’s narrative, challenges, and feedback
mechanisms. Future research could explore how the structure and
pacing of game content influence EEG patterns associated with
flow. By aligning the assessment intervals of flow state and inten-
sity with specific in-game events or milestones, we can create a
more responsive and contextually aware system for flow detection.

Third, expanding the sample size of the EEG dataset and
broadening categorization. To further enhance our understand-
ing of flow experiences and the performance of dynamic flow as-
sessment, expanding the participant pool is crucial. A more diverse
and larger-size dataset will allow for a richer analysis of individual
differences like personality traits, which can influence flow states,
ultimately providing insights into the factors that promote optimal
flow. Future work could incorporate a wider range of flow states
to develop a more comprehensive model that better captures the
intricacies of flow experience.

Fourth, the single-task paradigmposes challenges for broad
generalizability.While the "Whac-A-Mole" task is awell-recognized
flow-inducing tool and mirrors the single-task approach dominant
in current EEG-based flow studies, relying on one task type con-
strains the generalizability of results to varied contexts. Moreover,
our EEG dataset is the first to support simultaneous recognition of
dynamic flow states and intensities, thus limits direct comparability
with other flow EEG dataset. Future research should incorporate
multiple flow-eliciting tasks, diversify the dataset and enable more
robust cross-dataset analyses to improve the generalizability.

8 CONCLUSION
From a process view, we construct the first EEG dataset that includes
dynamic changes in flow states and flow intensity, to represent the
initiation, development, peak, and dissipation of flow experience.
Then we propose Frequency Aware Convolutional Transformer
(FA-ConFormer) model for assessing the flow experience, with sig-
nificant improvements in accuracy for predicting flow states and
intensity compared to existing methods. Additionally, we develop
a visualization technique using the FA-ConFormer model to delve
into how flow states correspond to changes in flow intensity, and
how the combined representation of flow state and flow intensity
elucidates the flow pattern, thereby enriching our understanding
of the flow experience.

In the future, we will consider broadening our data collection
scope by integrating interactive content and user personality into
the evaluation of dynamic flow experience. This approach will
improve our understanding of how users interact with various
content, improve the less intrusive flow assessment method, and
aid in optimizing HCI design.
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